POV-Ray : Newsgroups : povray.general : re vetices of a dodecahedron : Re: re vetices of a dodecahedron Server Time
16 Nov 2024 03:25:32 EST (-0500)
  Re: re vetices of a dodecahedron  
From: John VanSickle
Date: 18 Oct 1998 17:36:08
Message: <362A5D8E.81FDEDFF@erols.com>
Mick Hazelgrove wrote:
> 
> Help
> 
> I need the xyz co-ordinates for the vertices of a dodecahedron
> or the method for calculating them.

#local A=sqrt(5)+3;
#local B=sqrt(5)+1;
#local C=2;
#local R=sqrt(A*A+B*B+C*C);
#local A=A/R;
#local B=B/R;
#local C=C/R;

#local Point00=< B, B, B>;
#local Point01=<-B, B, B>;
#local Point02=< B,-B, B>;
#local Point03=<-B,-B, B>;
#local Point04=< B, B,-B>;
#local Point05=<-B, B,-B>;
#local Point06=< B,-B,-B>;
#local Point07=<-B,-B,-B>;
#local Point08=< A, C, 0>;
#local Point09=< 0, A, C>;
#local Point10=< C, 0, A>;
#local Point11=<-A, C, 0>;
#local Point12=< 0,-A, C>;
#local Point13=< C, 0,-A>;
#local Point14=< A,-C, 0>;
#local Point15=< 0, A,-C>;
#local Point16=<-C, 0, A>;
#local Point17=<-A,-C, 0>;
#local Point18=< 0,-A,-C>;
#local Point19=<-C, 0,-A>;

-- 
"Have the manners not to be hittin' the man until he's your husband, and
entitled to hit back!"


Post a reply to this message

Copyright 2003-2023 Persistence of Vision Raytracer Pty. Ltd.